Skip to main content

Research


https://fairmlbook.org/

Insights

This online textbook is an incomplete work in progress. Essential chapters are still missing. In the spirit of open review, we solicit broad feedback that will influence existing chapters, as well as the development of later material.

https://arxiv.org/pdf/1908.09635.pdf

Insights

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains.

https://dl.acm.org/doi/abs/10.1145/3351095.3375671

Insights

The recent interest in identifying and mitigating bias in computational systems has introduced a wide range of different—and occasionally incomparable—proposals for what constitutes bias in such systems. This tutorial introduces the language of measurement modeling from the quantitative social sciences as a framework for examining how social, organizational, and political values enter computational systems and unpacking the varied normative concerns operationalized in different techniques for measuring “bias.” We show that this framework helps to clarify the way unobservable theoretical constructs—such as “creditworthiness,” “risk to society,” or “tweet toxicity”—are turned into measurable quantities and how this process may introduce fairness-related harms. In particular, we demonstrate how to systematically assess the construct validity and reliability of these measurements to detect and characterize specific types of harms, which arise from mismatches between constructs and their operationalizations. We then take a critical look at existing approaches to examining “bias” in NLP models, ranging from work on embedding spaces to machine translation and hate speech detection.

https://arxiv.org/pdf/2106.13219.pdf

Insights

As machine learning methods are deployed in real world settings such as healthcare, legal systems, and social science, it is crucial to recognize how they shape social biases and stereotypes in these sensitive decision-making processes. Among such real-world deployments are large-scale pretrained language models (LMs) that can be potentially dangerous in manifesting undesirable representational biases- harmful biases resulting from stereotyping that propagate negative generalizations involving gender, race, religion, and other social constructs.

https://arxiv.org/pdf/1901.10002.pdf

Insights

As machine learning (ML) increasingly affects people and society, awareness of its potential unwanted consequences has also grown. To anticipate, prevent, and mitigate undesirable downstream consequences, it is critical that we understand when and how harm might be introduced throughout the ML life cycle. In this paper, we provide a framework that identifies seven distinct potential sources of downstream harm in machine learning, spanning data collection, development, and deployment. In doing so, we aim to facilitate more productive and precise communication around these issues, as well as more direct, application-grounded ways to mitigate them.

https://cacm.acm.org/magazines/2019/8/238345-embedded-ethics/abstract

Insights

The particular design of any technology may have profound social implications. Computing technologies are deeply intermeshed with the activities of daily life, playing an ever more central role in how we work, learn, communicate, socialize, and participate in government. Despite the many ways they have improved life, they cannot be regarded as unambiguously beneficial or even value-neutral. Recent experience shows they can lead to unintended but harmful consequences. Some technologies are thought to threaten democracy through the spread of propaganda on online social networks, or to threaten privacy through the aggregation of datasets that include increasingly personal information, or to threaten justice when machine learning is used in such high-stakes, decision-making contexts as loan application reviews, employment procedures, or parole hearings.1,3,8,12,17,23 It is insufficient to ethically assess technology after it has produced negative social impacts, as has happened, for example, with facial recognition software that discriminates against people of color and with self-driving cars that are unable to cope with pedestrians who jay-walk.13,15 Developers of new technologies should aim to identify potential harmful consequences early in the design process and take steps to eliminate or mitigate them. This task is not easy. Designers will often have to negotiate among competing values—for instance, between efficiency and accessibility for a diverse user population, or between maximizing benefits and avoiding harm. There is no simple recipe for identifying and solving ethical problems.